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ONE-WAY AND FLYBY INTERPLANETARY
TRAJECTORY APPROXTMATIONS USING
MATCHED CONIC TECHNIQUES

By Victor R. Bond and Ellis W. Henry
SUMMARY

A method for matching the position and velocity components at the
sphere of influence boundaries of both one-way and flyby trajectories
is presented. A one-way matched conic is computed by specifying the
Julian date of launch, flight time to the target planet, end the
inclination and periaepsis radii at both launch and target planet. A
flyby matched conic trajectory is computed by specifying in addition
the proper return time from the target planet to the launch planet
and the return inclinstion and periapsis radius &t the launch plenet
and by allowing the inclination and periapsis radius at the target
planet to be free.

The matched conic trajectory that results is a good approximetion
to a precision trajectory and may be used as a reference for inter-
planetary guldance end navigation studies.

INTRODUCTION

This note will present the analysis which was done in Advanced
Mission Design Brench (AMDB) in developing an interplenetary metched
conic computer program., The output of the program is either the
trajectory of a spacecraft between the Earth and another target plenet,
or a trajectory from Eerth by way of & second planet and then back to
Earth., These modes will be known as the one-way mode and the flyby
mode, respectively.



The trajectory i1s separated into three distinct phases for each
outbound or inbound leg. The first phase, called a planetocentric
phase, begins at periapsis of the spacecraft trajectory sbout the
launch planet and terminates at its sphere of influence. The second
phase, called the heliocentric phase, begins at the launch planet
sphere of influence and terminates at the target planet's sphere of
influence. The third phase is a&lso known as a planetocentric phase
but the motion begins at the target planet's sphere of influence
and terminates at periapsis near the target planet. The planetocentric
phases assume the motlion to be a conic with respect to either the
launch or target planet, end the heliocentric phase assumes the motion
to be & conic with respect to the Sun.

The purpose of the anaslysis presented will be to show how the
positions and velocities are matched at the sphere of influence
boundaries, and to outline the method of generating the conic
trajectories during each phase of the trajectory. By matching both
position and velocity, the resulting trajectory is a good approximation
to a precise trajectory and as such may be used as a reference trajectory
in navigation and guidance studies.

SYMBOLS

a semi-mgjor axis

e eccentricity

F, G functions occurring in solution of heliocentric two-body
problem

f, g functions occurring in solution of planetocentric two-body
problem

H hyperbolic equivelent of eccentric anomely

h unit vector along angular momentum

i inclination of orbital plane

i, J, ﬁ orthogonal unit vectors defining an inertial system



S

unit vector along nodal line

heliocentric position and velocity vectors

planetocentric position end velocity vectors

magnitude of r

unit vector outward from planet along hyperbolic asymptote
Julian date

time

unit vector shown in figure 1

right ascension and declination of hyperbolic asymptote
vector along angular momentum defined by equation (19)

angle between periapsis asnd the hyperbolic asymptote

constant of gravitation
angle between semilatus rectum and velbcity vector
angle defined by equation (17)

Subcripts
quantity referenced to arrival planet
quentity referenced to departure on launch planet
quantity computed at target planet in free-return mode
flight
denoting planet position or velocity referenced to Sun

specified ab Earth for return leg of free-return mode

quantity referred to target planet in free-return mode

quantity computed or specifled &t periepsis




X, ¥, Z components of a vector in system defined by i, 3, k
1, 2 quantity in neighborhood of planetary sphere of influence
Superscripts
( )* quentity af planetary sphere of influence
() * quantity at planetary sphere of influence, evaluasted from
heliocentric conic
( )+ quantity referring to northern hemisphere of planet
()" quaentity referring to southern hemisphere of planet
ANALYSIS

This analysis, with some changes, is similar to that presented in
reference l. The authors of reference 1 restricted themselves to the
one-way class of trajectories. As mentioned above, the flyby mode is
presented here. Another slight difference is that the lInclination in
the planetocentric phase is specified raether than the right ascension

of ascending mode, which was specified in reference l. The mathematical

approach to the problem is also different. The authors of reference 1
solved the problem without resorting to the convenience of vector
notation, which is used to the fullest extent in this note.

For the one-way mode, the following quantities are specified:
the Julian date of launch from the departure plane, Tp; the flight
time to the target planet, tFTA; the inclination, iD, and radius of

periapsis, r.ps at the departure planet; and the inclination, iA, and

radius of periapsis, rgp, at the arrival, or target planet. These six
quantities are sufficilent information to completely solve for the
trajectory in the one-way mode except for bounds on the inclinations,

- which will be discussed later.

For the flyby mode, the following quantities are specified: the
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planet, tgppa; the flight time to return to Earth from the target
planet, tprp; the inclination, ip, and radius of periapsis, r.p, at



Earth departure; the inclinsation, ig, and redius of periapsis, r R

st Esrth return. There are seven quantities specified here but they
are subject to the single constraint that the flight times must be
chosen such that the incoming velocity magnitude et the target planet's
sphere of influence must be equal to the outgoing velocity magnitude

at the sphere of influence. The values of QD, tppa, &8nd tFLR may be

picked from several documented sources such as references 2 and 3.

The analyses for the separate trajectory rhases are done in the
following two sections.

The Planetocentric Phases

During this phase, the spacecraft motion is assumed to be planet-
centered, The necessary quantities for determining the trajectory in
the planetocentric phase are the velocity of the spacecraft at the
planetary sphere of Iinfluence as computed from s heliocentric
trajectory v¥', the radius of the sphere of influence, r¥*, the radius

of periapsis, T and the inclination of the trajectory plane to the
planetary equator, i.

If the launch dste, arrival date at target planet, and return date
to Earth are chosen so that the trajectory is a flyby, the inclination,
i, and periapsis radius, r_, at the target planet are not independent
quantities and may be computed &s will be shown later.

The solution of this problem must ultimately yield the position and
velocity vectors r¥ and v¥ of the spacecraft at the sphere of influence.
It should be noted that the velocity v¥ is slightly different in
direction and magnitude from the velocity v¥'. This difference is due
to the fact that v¥' was computed from a heliocentric trajectory which
goes through the center of a massless planet, while X% assumes two-body
motion about the planet with a non-zero periapsis readius.

The semi-major exis is computed from,

2
a-l"(%'vz ); (1)

which will, of course, be negative since all of the trajectories in the
pPlanetocentric phase will be hyperbolic.



The eccentricity is found from

H

e=l--a-£. (2)

As shown in figure (1), the angle between ry and the asymptote of
the hyperbola is

M = cos™t ('—i) (3)

The time from periapsis to the sphere of influence is

ty ="-‘—32 (e sin H - H), (%)

where H is found from

r¥\ 1
coshH-(-a—-)-e;. (5)
The magnitude of the velocity at periapsis is found from
2 1
Vg = u(-;.;-;)- (6)

The directions of the hyperbolic asymptotes which are always
essumed to have thelr origin at the planet may be computed by meking
the assumption that v*' is parallel to the hyperbolic asymptote for
departure trajectoriEé and anti-parallel for arrivel trsjectories., In
vector notation,

v¥!
A -—D *
for departure, and
Y (8)
a =A
SA T L

for arrival,



In order to compute the plenetocentric position and velocity
vectors Eﬁ and zs or EK and XK’ it is first necessary to derive expres-

sions for the position and velocity at periapsis. For the departure
case, see figure 1(a) and for the arrival case see figure 1(b).
The derivation of r. and Vo ls essentially trigonometrical and the

resultes ere stated simply as

I = T (cos nSD - sin ﬁWD)
o (9)
vp = V:-CD (sm nﬁD /+ cos g WD)
for departure trajectories, and
T =T (cos n SA - sin HWA> } (10)
Yer = Vo (-sin qéA - cos nWA)
for arrival trajectories.
The unit vectors TﬁD and W n for the arrival and deperture are
found from
Wy = h x éD
. A A (11)
WA = =h % SA

ﬁD or WA is in the plane of the motion perpendicular to X*' , and the

vector h 1s a unit vector normal to the plene of motion and has the
same directlon as the angular momentum. The unit vector f depends
upon the orientation of the plane of motion with respect to the

planetocentric inertial coordinate system and is given by (ref. 4)

h=fsinQsini-3fcosQeini+%cos i (12)

The unit vector i is along an inertial direction 1s space, for example,
the vernal equinox 1f the system is geocentric; k 1s normal to the




plangt's equetor and in the same direction as the plasnetary spin exis;
and J 1s chosen to complete the right-hand system.

Now specialize to the one-way mlssion case; that is, the trajectory

is not a flyby or free return. The inclination, 1, 1s specified as
elther iD or iA and the right ascension of the ascending mode, Q, may

be computed except for an ambigulty which may be resolved by arbitrary
selection,

For departure trajectories, as may be seen from figure 2(a), the

periapsis may be chosen to be in either the northern hemisphere or
the southern hemisphere by specifying either

Q+ =+ 0+ (13)
for northern hemisphere periapsils, or

Q =a-0¢ ry
for southerm hemisphere perispsis.

For arrival trajectorles, as seen from figure 2(b)

F=a-o0 (15)
for nothern hemisphere periapsis, and

r=ag+o0+n ' (16)
for southern hemisphere periapsis.

The angle O is found in all cases from,

sin o= Ten 1 (17)

The angles & and a are the declination and right ascension of
the asymptote and may be computed from éD Or 5).

Equation (16) expresses the limitation on the angle of inclination,
which may be specified. It 1s obvious that

|ten 8| <|ten 1 (18)

for (16) to be meaningful,



For the flyby case, the inclination, the periapsls radius, and the
right ascension of the ascending node are computed from the arrival
and departure velocity vectors at the target planet, VX& and zsé,

which of course must have the same magnitudes. The cross product

E = XK& % XS& must have the same direction as the angular momentum,
1
— (19)
'—AT T| ¢

The inclination i1s computed . comparing equations (12) and
(19),

}‘; . ﬁ = COSs i Z/C (20)

Similarly, the right ascension of the ascending node 1s found from the
two equations,

Cx
sin Q siniF=-E-
(21)
cog Q0 sini_ = = EX
F ¢

The radius of periapsis, rom 1s found by first finding the
seml-major axls from (1), and the eccentricity by inverting (3), i. e.,

-1

From figure 3, it 1s seen that C is related to the angle v by
Nn=v+z, | (23)

where v 1s found from the magnitude of the cross-product in
equation (19),
v*' v*"
sin 2v = —-—--2-—— (2’-}-)
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From equations (2), (22), and (2k),

rop =8 (} - cse ;) . (25)

The computed inclination iF and perlapsls radilus rnF at the flyby

planet are now used exactly as in the one-way case. For the Earth-target
planet leg iD and r o are specified, the target arrival inclinatiol and

periapsis radius ere set as iA = iF and r For the target

=T .
A i
planet-Esrth leg, iD = iF and rﬂD = rnF and iA = iR and rﬂA = rﬂR,
where iR and r g 8re; of course, specifiled.

The one-way case and the flyby case reduce to the same formulation
with the exception noted above. The perigee position and velocity
vectors equations (9) or (10) are now advanced (for departure trajectories)
or regressed (for arrival cases) to the sphere of influence of the
plane‘t.

For departure trajectoriles,

ot (tnD) T Io g(tnD)
) (26)
vk = o £ (%n%) + Vo g (tn€>

end, for arrivel trejectories,

e Zu Tt +1’1nAg('tnA)

X=Ip T (-t +1’-::Ag(’tnA>

*
5

. (1)

The Heliocentric Phase

During this phase, the spacecraft motion is assumed to be Sun-centered
and to take place between the sphere of influence of the departure and
arrival planets. Basically, this solution involves the solution of
Lambext's problem.

The quantitles that are required from this phase for use in the
planetocentric phases are the velocitiles 25' and XK' of the spacecraft

at the planetary spheres of iInfluence, These velocities are estimsated



initially as given in the Appendix. After their first computation,
the matching process begins, and they are subsequently computed as
follows:

Let 25 and rX be the position vectors of the spacecraft at the

departure and arrival planetary spheres of influence (taken to be with
respect to thelr respective planets, of course). Further, let tnD
and tnA be the time to periapslis from the spheres of influence of the

departure and arrival planets. These quantities, 55, EX’ tnD’ and tnA

are computed with respect to the planets as shown in the section on
the planetocentric phese.

The heliocentric portion of the flight must now be computed with
slightly difference position vectors for the spacecraft as well as at
slightly different times at the spheres of influence.

The adjusted position vectors of the spacecraft with respect to
the Sun st the planetary spheres of influence are

B = By (T = 5+ By () (28)
nd :
; B - B, (TF') = vF+ B, (T41), (29)
where

R

T =Ty +t ,

The position vectors Bs' and BX' and the time ?X' - ig‘ are now

used to solve Lambert's problem. The result of this solution is the
spacecraft arrival and deperture velocities at the sphere of influence,
that is, 25' and YX'. The velocity vectors of the spacecraft with

respect to the planets may be found by

V5" - Ypp (T") (20)

v
~D

and

v =y - v, (T, (31)

]



THE VELOCITY MATCH PROCESS

The relative velocity vectors zﬁ' and XK' at the sphere of

influence of the departure and arrival planets which were computed in
the heliocentric phase assuming massless planets must now be compared
with the velocity vectors XS and XK’ which were computed during the

plenetocentric phases. If ng - 231 andlxx - XX1 are less than a

small velocity tolerance (say, 3 fps), then the velocitles are

considered to be matched and the entire problem is solved. If either

or both of the velocity differences are greater than the tolerance, then
the planetocentric phases are repeated and the computastions are initiated

by XS| and XX'. It has been found that a velocity match is attained to

within 3 fps after only two or three cycles. The matching process can
be visuallzed easily from figure L.

For the flyby case, the Earth departure and Earth return legs are
treated separately, belng certain that the perlapsis radius, inclination,
and right ascension of ascending node are the same for both legs. It
has generally been found that it 1s not necessary to repeat the
calculation of these quantities for each matching cycle. These are
computed from zs' and XK' Just prior to the first cycle and are then

maintained throughout.
AN EXAMPLE

The short-long Mars flyby mission (l.e., short outgoing trajectory
and long return trajectory) with & launch date of September 20, 1975,
was chosen as an example. From reference 2, it is seen that this
mission has & near minimum injection velocity at Earth. This mission
1s designated by the following specified quentities:

T =2 442 675.0 (September 20, 1975)

ct
]

FLA 155,29 days

t_. . = 538.6k4 days
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rp = 262 n. mi. plus radius of Earth
_ £~0

1R_6o

rnR = 70 n, mi. plus radius of Earth

Two trajectories were computed using the above input. The filrst
required the periepsis at Earth Injection to be in the southern
hemisphere and the periapsis at Esrth return to be in the southern
hemisphere., The second required s north periapsis injection at Earth
and a south perlspsis return at Eerth. The coordinate system used in
all phases was the equatorial system. These trajectorlies are summarized
in table I.

CONCLUDING REMARKS

A method for matching conic trajectories at sphere of influence
boundaries has been presented. The metch is exact for position
components and within about 3 fps (root sum square) for the
velocity components. By specifying the Julien date of lasunch, flight
time to the target planet, and the inclinations and periapsis radii at
both launch and target planet, a one-way match conic trajectory may
be computed. By further specifying the proper return time from the
target plenet to Earth, the return inclination and perilapsis radius at
Earth, and allowing the inclination and periapsis radius at the
target planet to be free, a flyby matched conic trajectory may be
computed.

When the inclinstion and periapsis redius are specifled at a
planet, there are two possible trajectories in that planet's sphere of
influence. This ambiguity arises due to fact that for a given
inclingtion there exists two possible values of the right ascension of
the ascending node. By proper choice of this angle, the perilapsis
position vector may be placed in elther the northern or southern
hemisphere.

The resulting trajectory 1s & good approximation to a precilsion
trajectory and may be used as & reference trajectory for interplanetary
guldance and navigation studies.
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APPENDIX

THE FIRST ESTIMATES OF THE SPACECRAFT

DEPARTURE AND ARRIVAL REIATIVE VELOCITIES

The first step in estimating XS' and XX' is to obtain the conilc

solution for the motion of the spacecraft between the centers of

departure and arrival planets. Gilven the Jullan date, TD, of lsunch

from the departure plane, and the Julian dste, TA’ at the arrival
planet, the initial and final position vector, BD and BA’ of the

spacecraft are determined from the planetary ephemeris. By the solution

of Lambert's problem, the corresponding velocities Yb and YA are found.

. (This solution is given for example in ref., 7.) The velocities

% %
Xb or YA may be determined from BD and yb, or EA and YA by numerically

determining the time, t%, required by the spacecraft to travel from
the center of the departure plsnet to its sphere of influence, or
from the arrival plsnet's sphere of influence to 1ts center.

The position and velocity, ED and !b at departure or BA and XA at

arrival, are used as initial conditions to determine the spacecraft's
heliocentric position Bl’ at some time tl, near the sphere of influence.

For departure,
R, (t)) = By F(t,) + ¥ G(t,). (A1)

The relative position of the spacecraft with respect to the plenet at
tl 1s computed from

ry(t)) = By(%)) - By (85 + T)e (42)
Now let t be incremented a small emount At, and again compute the
relative position at t, = tl + At;

rp(ty) = Ry(ty) - Rty + T)e (A3)

— %
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The planetary ephemeris may be cobtained analytically as in
reference 5 or numerically from a planetary data source as in reference 6.

The rate of change of the relstive spacecraft position magnitude is
Tglrly linear near the sphere of influence so that the time of crossing
the sphere of influence 1s glven spproximately by

t2 - tl
*: S ——— L]
th =ty F——= (¥ - 1)) (Ak)
2 1l
Experience hes shown that tl may be taken to be 1l day and At as

1 hour to glve a fairly accurate value of t¥., This may be improved by
repeating the computation in (AL) by letting t, = t* and letting At be

1 minute. After 2 cycles of this computation t* is such that the
computed value of r¥ is within 20 n, mi. of the actual value.
The relative position 23' and velocilty xﬁ' at the departure sphere

of influence may now be computed from

r*l(t* = R¥* -

and () = BRO%) - By (00 + ) (45)
vE'(t¥) = W*(e¥*) - Vo (t% + T,),

where '
R* (t*) = By F(t¥%) + ¥ G(t¥),

v (%) = BD F(t*) + ED G(t*),

* *
and BPD(t + :D) end XPD(t + TD) are determined from the planetary

ephemeris.

The relative position and velocity, EK' and XX', at the arrival

sphere of iInfluence are computed similarly, with tl and At taken to be

negative and with BA and yh as the initiasl condltions.
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Figure 1. - Geometry of hyperbolic trajectory.
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(a) Departing

Figure 2. - Geometry of northern (+) and southern (-) periapsis vectors for hyperbolic trajectories.
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(b) Arriving

Figure 2. - Concluded.
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Figure 3, - Geometry of flyby hyperbolic trajectory.
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